Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Chemosphere ; 307(Pt 4): 136025, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2031190

ABSTRACT

In recent years the funeral industry has drawn attention from the scientific community concerning the potential pollution of the environment and the urban environment. In this review, the pollution caused by the cemeteries and crematoria around the world was addressed. The traditional burial leads to the production of ions, in the form of organic and heavy metals, bacteria, fungi, and viruses, that spread along with the soil and underwater. The crematoria produce small particles, trace gases (SOx, NOx, CO), and toxic organic volatiles. The effluent generated by both methods can lead to several environmental problems and further threaten human health. The current solution for the cemeteries in the development of a system in which effluent generated by the traditional burials are collected and treated before realizing in the environment. In addition to that, the green burial should be an alternative, since the corpse does not go through the embalming process, thus eliminating the presence of any undesired chemicals, that are further leached onto the environment. The crematoria should be employed as it is, however, the gas treatment station should be employed, to ensure the minimization of the impact on the environment. Last, future researches regarding the treatment of the cemeteries leached still need to be explored as well as the optimization and further development of the crematoria gas treatment process.


Subject(s)
Cremation , Metals, Heavy , Cemeteries , Environmental Pollution , Gases , Humans , Metals, Heavy/analysis , Soil
2.
Sustainability ; 14(2):993, 2022.
Article in English | ProQuest Central | ID: covidwho-1633578

ABSTRACT

Anthropogenic sources such as urban and agricultural runoff, fossil fuel combustion, domestic and industrial wastewater effluents, and atmospheric deposition generate large volumes of nutrient-rich organic and inorganic waste. In their original state under subsurface conditions, they can be inert and thermodynamically stable, although when some of their components are exposed to surface conditions, they undergo great physicochemical and mineralogical transformations, thereby mobilizing their constituents, which often end up contaminating the environment. These residues can be used in the production of technosols as agricultural inputs and the recovery of degraded areas. Technosol is defined as artificial soil made from organic and inorganic waste, capable of performing environmental and productive functions in a similar way to natural ones. This study presents results of international research on the use of technosol to increase soil fertility levels and recover degraded areas in some countries. The conclusions of the various studies served to expand the field of applicability of this line of research on technosols in contaminated spaces. The review indicated very promising results that support the sustainability of our ecosystem, and the improvement achieved with this procedure in soils is comparable to the hybridization and selection of plants that agriculture has performed for centuries to obtain better harvests. Thus, the use of a technosol presupposes a much faster recovery without the need for any other type of intervention.

SELECTION OF CITATIONS
SEARCH DETAIL